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Abstract.

Air pollution, particularly exposure to ultrafine particles (UFPs) with diameters below 100 nm, poses significant health risks,

yet their spatial and temporal variability complicates impact assessments. This study explores the potential of machine learning

(ML) techniques in enhancing the accuracy of a global aerosol-climate model’s outputs through statistical downscaling to better

represent observed data. Specifically, the study focuses on the particle number size distributions from the global aerosol-climate5

model ECHAM-HAMMOZ. The coarse horizontal resolution of ECHAM-HAMMOZ (approx. 200 km) makes modeling sub-

gridscale phenomena, such as UFP concentrations, highly challenging. Data from three European measurement stations were

used as target of downscaling, covering nucleation, Aitken, and accumulation particle size modes. Six different ML methods

were employed, with hyperparameter optimization and feature selection integrated for model improvement. Results showed a

notable improvement in prediction accuracy for all particle modes compared to the original global model outputs, particularly10

for accumulation mode, which achieved the highest fit indices. Challenges remained in downscaling the nucleation mode, likely

due to its high variability and the discrepancy in spatial scale between the climate model representation and the underlying

processes. Additionally, the study revealed that the choice of downscaling method requires careful consideration of spatial and

temporal dimensions as well as the characteristics of the target variable, as different particle size modes or variables in other

studies may necessitate tailored approaches. The study demonstrates the feasibility of ML-based downscaling for enhancing15

air quality assessments. This approach could support future epidemiological studies and inform policies on pollutant exposure.

Future integration of ML models dynamically into global climate model frameworks could further refine climate predictions

and health impact studies.
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1 Introduction

Air pollution is considered one of the leading global health risks, in terms of both associated premature deaths and disability20

(GBD 2019 Risk Factors Collaborators, 2020). Fine particulate matter (PM2.5, particle diameter < 2.5 µm) has been found to

be especially harmful; a recent report from the Global Burden of Disease study identifies it as the most important environmental

health risk factor (McDuffie et al., 2021). Although PM2.5 has undergone extensive study, exposure to and health impacts of

smaller particle sizes, such as ultrafine particles (UFPs) with diameters below 100 nm, remain less well understood (Fuzzi

et al., 2015; Vogli et al., 2023). The size of aerosol particles influences, for example, their deposition in the human respiratory25

tract and their reactive surface area, which in turn can affect their potential to cause health problems (Kreyling et al., 2004;

Schraufnagel, 2020). According to epidemiological and toxicological studies, UFPs can more easily enter the alveoli in the

lungs, and from there reach other organs (Kreyling et al., 2004; Schraufnagel, 2020). Compared to larger particles, they can thus

potentially contribute to, for example, diabetes (Bai et al., 2018), cancer (Pagano et al., 1996), and ischemic cardiovascular

disease (Downward et al., 2018; Li et al., 2017; Ostro et al., 2015) more strongly. However, due to their high spatial and30

temporal variability, estimating exposure to UFPs is challenging, leading to uncertain or even conflicting conclusions regarding

their health impacts (Vachon et al., 2024a; Schraufnagel, 2020). Currently, both the World Health Organization (Organization,

2010) and the European Union (European Council, 2008) provide guidelines on safe exposure limits for PM2.5 and PM10

(diameter < 10 µm), but no such limits exist for UFP. Indeed, according to a recent review of the topic (Schraufnagel, 2020),

UFPs are, in many ways, "at the frontier of air pollution research".35

As the availability of exposure data limits the potential to conduct epidemiological UFP studies (Vachon et al., 2024a),

various approaches have been used to gain more information on UFP concentrations. To study exposure to pollutants, obser-

vations from a scarce network of sites have typically been expanded to cover the study area, such as a city, through methods

like land use regression (LUR) (Venuta et al., 2024; Amini et al., 2024; Wolf et al., 2017) or interpolation (Jung et al., 2023).

Sometimes, more measurements are done in relatively short campaigns to improve the spatial coverage (Vogli et al., 2023;40

Downward et al., 2018), or satellite-based observations are added as inputs to LUR models to more accurately represent spatial

or temporal variability of pollutants (Zani et al., 2020; Jung et al., 2023; Stafoggia et al., 2019). Most such studies are focused

on pollutants other than UFPs, however (Lin et al., 2022). In recent years, machine learning (ML) has also been a common tool

in improving the accuracy of LUR models, often outperforming traditional statistical methods (Vachon et al., 2024b).

While improved spatial characterization of present-day air quality is valuable for understanding its health implications, pre-45

dicting how air quality may evolve in the future is also important. Actions taken to mitigate climate change might significantly

affect the emissions of pollutants or their precursors, thus hindering the prediction ability of LUR models. Furthermore, since

these models are purely descriptive and not integrated with physics-based tools, they cannot be used for studying air quality

under varying emission scenarios.

Besides the said statistical methods, local-scale air quality is commonly represented using deterministic models that simulate,50

for example, the emissions, transport, and transformation of pollutants (Sofiev et al., 2006; Johansson et al., 2022). As the

inputs of these models can in principle be modified based on the climate change scenario of interest, they could be suitable for
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long-term air quality prediction. However, many physics-based models simulate only gaseous pollutants such as NOx (Pepe

et al., 2016) and O3 (Sharma et al., 2013); aerosols, if supported, may be limited to larger particle sizes (Friberg et al., 2017),

omitting UFP. Additionally, running simulations can be computationally expensive and always requires boundary conditions55

from global climate models, further increasing computational costs. The physics-based air quality models are also not ideal for

all sites, as accounting for urban infrastructure or complex terrain requires detailed information about local topography, which

is often either unavailable or not accurately captured by local-scale models.(Hinestroza-Ramirez et al., 2023).

Compared to air quality models, global-scale climate models generally produce more output variables, potentially also

containing size-resolved representations of aerosols. Simulating long-term global changes in aerosol concentrations is possible60

with climate models, as they incorporate a broader range of atmospheric processes and feedback mechanisms compared to

regional climate models. Since global-scale models are already necessary to generate boundary conditions for regional models,

using them directly for generating air quality estimates might seem practical. However, for local-scale air quality estimation,

the resolution of current climate models is far too coarse, typically ranging from tens to hundreds of kilometers horizontally and

tens to hundreds of meters vertically (Turnock et al., 2020). Particularly for UFPs, the challenge arises from their concentrations65

being governed by processes such as primary emissions and secondary formation and growth, which occur both in multiple

scales. The initial cluster formation occurs in sub-grid spatial scales and it is highly spatially variable (Dada et al., 2023),

including a contribution from traffic as well (Rönkkö et al., 2017), while the growth to Aitken and accumulation mode sizes

(see Section 3) takes place in synoptical scale (Petäjä et al., 2022). All of this makes the particle size distribution of the

nucleation mode highly variable in space and time.70

An approach known as downscaling can be applied to the low-resolution outputs of global climate models, with the aim

of improving their accuracy in the local scale. In this context, the nested approach of initializing regional climate models

with boundary conditions from global simulations is called dynamical downscaling (Maraun and Widmann, 2018). Another

technique, statistical downscaling, instead aims to find a statistical dependence between coarse-resolution outputs and local

observations of the quantity of interest. This dependence can later be used for output correction as a post-processing step.75

The benefit of statistical downscaling lies in its computational efficiency compared to the computationally much more costly

dynamical downscaling (Xu et al., 2020). Most of the literature on downscaling focuses on correcting meteorological variables

such as temperature (Li et al., 2020; Goyal et al., 2011; Kim and Villarini, 2024) and precipitation (Xu et al., 2020; Vandal et al.,

2017; Sachindra et al., 2018). Some recent studies have applied statistical downscaling to air quality variables (Miinalainen

et al., 2023; Gouldsbrough et al., 2024; Ivatt and Evans, 2020) but only a few to UFP concentrations (Kohl et al., 2023).80

Although the statistical methods for downscaling have typically been simple bias corrections or linear regressions (Maraun and

Widmann, 2018), many downscaling studies from the past few years have instead utilized ML methods with promising results

(Xu et al., 2020; Sachindra et al., 2018; Miinalainen et al., 2023; Gouldsbrough et al., 2024). To our knowledge, however, none

so far has applied ML methods to UFP downscaling.

In this study, using various ML methods, we have downscaled aerosol particle number size distributions produced by a85

global aerosol-climate model to better match observations from three measurement stations. We used data from two urban

stations (Helsinki, Finland and Leipzig, Germany) and from one rural background measurement station (Melpiz, Germany).
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The size distribution was represented by three size modes, the so-called nucleation, Aitken, and accumulation modes. Based

on these, we categorized the simulated and observed daily average particle number concentrations (PNCs). All three modes

overlap with the UFP size range (< 100 nm), with the nucleation mode being barely above molecular cluster size and a part of90

the accumulation mode exceeding 100 nm. A broad selection of ML methods, six in total, was used and is further described in

Section 4.4. Moreover, ML model hyperparameters were optimized and feature selection performed, to obtain optimal model

configurations for the task. Finally, a glimpse into the inner workings of the black box ML models was provided by a game

theoretical method, SHAP, that aims to explain the usage of features by these models. The objective of the study is to act

as a proof of concept, showcasing the potential of ML methods in improving predicted PNCs in different parts of the UFP95

size range. Additionally, comparing the performance of ML methods can help determine whether some of them could be

particularly recommended. Ultimately, such ML-based downscaling of UFP could serve to study air quality simultaneously

with other aspects of climate change, helping improve policy-making by accounting for more diverse consequences. Past air

quality datasets could also be expanded using this method for studying UFP health effects. A new air quality directive of

the European Union (European Council, 2024) includes a mandate to measure UFP concentrations throughout urban and rural100

supersites in Europe. In the next decade, this is expected to enhance the availability of UFP data for health studies. Our approach

could provide additional insights into UFP concentrations already before the new measurements are implemented.

2 Climate simulation

We conducted the global climate model simulations with the aerosol-climate model ECHAM6.3-HAM2.3 (ECHAM-HAMMOZ)

(Schultz et al., 2018; Tegen et al., 2019; Neubauer et al., 2019). ECHAM-HAMMOZ includes the general circulation model105

ECHAM (Stevens et al., 2013), the aerosol module HAM (Tegen et al., 2019; Neubauer et al., 2019) and also the chemistry

module MOZART (Schultz et al., 2018). We use the aerosol microphysics module SALSA2.0 (Kokkola et al., 2018), which

discretizes the aerosol size distribution into ten size classes and treats a soluble and an insoluble sub-population separately. A

more detailed description of the SALSA module is presented in Kokkola et al. (2018). In the aerosol module HAM, the aerosol

compounds treated are black carbon (BC), sulfate (SU), organic aerosol (OA), sea salt (SS), and mineral dust (DU). The grid110

resolution that was used in our simulations was T63L47, corresponding approximately 1.9◦× 1.9◦ horizontal resolution. The

grid extents vertically to 0.01 hPa (∼80km) and there are 47 vertical hybrid layers. The layer nearest to surface has a height of

approximately 65 meters. The chemistry module MOZART was not included in our setup, but instead a simplified scheme for

sulfur chemistry was used (Feichter et al., 1996; Stier et al., 2005).

The simulations were performed using prescribed sea surface temperature and sea ice cover from data from the Atmospheric115

Model Intercomparison Project (AMIP) of the Program for Climate Model Diagnosis and Intercomparison (PCDMI) (Taylor

et al., 2012). In addition, large-scale meteorological fields, wind and surface pressure, were nudged towards ERA5 reanalysis

data (Hersbach et al., 2020, 2017). Temperature and free static energy were allowed to evolve freely (Zhang et al., 2014).

The anthropogenic aerosol emissions were prescribed as monthly averages from the ECLIPSE V6b emission inventory (Stohl
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et al., 2015; IIASA, 2024). A more detailed description of the aerosol emission input fields can be found from Miinalainen120

et al. (2023).

3 Aerosol measurements

Measurement data used in this study consist of atmospheric measurements from three stations (Fig. 1), spanning years 2016–

2018. Specifically, particle number size distribution data measured with the DMPS device were obtained from the stations.

The data are openly available from SmartSMEAR (SmartSMEAR, 2025; Junninen et al., 2009, Helsinki) and EBAS databases125

(EBAS, 2025, Leipzig and Melpitz). These sites were chosen because of the relatively long and continuous time series of

aerosol size distributions available. In this section, we focus on providing short descriptions of the stations’ locations and

regional representativeness, relevant for interpreting the results. More detailed information about the measuring stations can be

found in the references of their short descriptions in the paragraphs below.

The size distribution data have been reformulated into number concentrations of three modes, nucleation (< 7.7 nm), Aitken130

(7.7–50 nm), and accumulation (50–700 nm). These size ranges correspond to the SALSA bins 1a1 for nucleation, 1a2–1a3 for

Aitken, and 2a1–2a3 for accumulation mode. The hourly number concentrations of the three modes have then been averaged

to one-day time resolution. These data processing steps were performed by Leinonen et al. (2022), and are further discussed

there. However, in our study, days with fewer than eight hours of measurements were also removed from the dataset to ensure

representativeness. Daily averaged number concentrations of the modes, which act as the target variables in our study, are135

presented together with simulated ECHAM-HAMMOZ concentrations in Fig. 2.

The Helsinki station (60°12′ N 24°58′ E) is situated in Helsinki, Finland (see Hussein et al. (2008) and Järvi et al. (2009) for

details). Helsinki is the largest city in Finland (approx. 675 000 inhabitants), and more than 1.5 million inhabitants live in the

Helsinki metropolitan area. The Helsinki station is classified as an urban station. All three modes were available from Helsinki

station.140

The Melpitz station (51°32′ N 12°54′ E) is situated in Germany, in the southwest of the small town of Torgau (approx. 20 000

inhabitants), immediately west of the village of Melpitz (Hamed et al., 2010). The station is classified as a rural background

station (Birmili et al., 2016). All three modes were also available from the Melpitz station.

The Leipzig station (51°21′ N 12°26′ E) is situated in the city of Leipzig, Germany (approx. 590 000 inhabitants), about 4

km east from the center of Leipzig (more detailed description in Birmili et al. (2016)). The Leipzig station is classified as an145

urban background station. Aitken and accumulation mode number concentrations are available from the Leipzig station. At the

Leipzig station, the particle size distribution started at 10 nm, and for this reason, the number concentration of nucleation mode

is not available from the Leipzig station.
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Figure 1. Measurement site locations marked on the map of north-eastern Europe. M, L, and H refer to the Melpitz, Leipzig, and Helsinki

sites, respectively. The grid lines show the coarse output resolution of ECHAM-HAMMOZ. As can be seen, Leipzig and Melpitz are located

in the same grid cell. Coordinates have been rounded to one decimal place.
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Figure 2. Daily averages of measured and simulated PNCs per mode of particle size distribution (rows) at each of the three sites (columns),

from 2016 to 2018. The black bars represent missing data. Partitioning of the data into training, validation, and testing subsets is shown by

the dashed vertical lines. Acc, Ait, and Nuc refer to the accumulation, Aitken, and nucleation modes, respectively.
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4 Analysis methods

4.1 Downscaling workflow150

Statistical downscaling, in this application, refers specifically to finding and utilizing a relationship between the large number

of ECHAM-HAMMOZ output variables and the observed particle number concentrations (PNCs) at the three sites with the

aid of ML methods. If the ML models can learn this dependence, they no longer need the measurement data to function, but

can predict the PNC based purely on the climate simulation. In other words, the outputs of the ECHAM simulation constitute

the inputs of the ML models, and the output of the ML models is the number concentration of a specific size mode. The ML155

output is also referred to as the target variable, while the input variables are commonly called features.

As the first step of the ML pipeline, the dataset consisting of simulated features (i.e., the simulation outputs of ECHAM-

HAMMOZ) and measured PNC was split into three subsets, known as training, validation, and testing sets (see Section 4.2).

Next, the number of input variables was reduced through feature selection (Section 4.3), the hyperparameters of the models

were tuned (Section 4.5), and the models were trained, while evaluating the models’ performance at each step where necessary.160

In ML terminology, hyperparameters refer to the tunable parameters of the ML algorithms. This is in contrast to the internal

parameters, such as linear model coefficients or neural network weights, which are not controlled by the user but automatically

selected by the algorithms. After the optimized, trained models were obtained, further analysis and comparison was done.

On each iteration step of the hyperparameter optimization, an ML model with particular hyperparameter values was fit to

the training data, and the trained model was then tested on the validation data to obtain a measure of its goodness-of-fit. The165

purpose of this common approach is to avoid overfitting the model to the training data, which would impair its generalizability.

A separate validation set was used instead of k-fold cross-validation to avoid temporal leakage of information, where future

data is used for training and past for testing (Fraga et al., 2023). Rolling variants of cross-validation that retain the ordering of

the data were considered, but initial tests showed poor generalization across folds, possibly due to the seasonality inherent in

the data.170

When the optimization was finished, the combination of hyperparameters leading to the best validation performance was

selected, and the ML model with this configuration was retrained on the combined training and validation subsets. Then, the

model was applied to the testing subset to evaluate its performance on completely unseen data. This was done because there

could be a slight, optimistic bias in the validation score when the hyperparameters have been selected to be optimal for the

validation subset. Because some of the ML methods (RF and the NNs, see Section 4.4) utilize randomness as part of their175

algorithms, and therefore depend on the initialization of the random number generator, the retraining part was repeated with

50 different seed numbers. In the results, the mean performance is shown for these methods. Finally, the SHAP method (see

Section 4.6) was applied to the trained models to investigate their use of input variables.

4.2 Data preparation

For each station, we used ECHAM-HAMMOZ data from only one ECHAM grid cell, which contained the station coordinates180

and altitude. Thus, the global scale simulation data were matched with the point measurements. Both the observed and sim-
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ulated data were then averaged to daily resolution. We selected 93 variables directly from ECHAM-HAMMOZ data as input

variables, covering meteorology, aerosol composition and size distribution. Additional variables were created to replace or

complement the existing simulated variables. The u and v components of wind were transformed into two cyclic directional

components (north-south, wind_ns and east-west, wind_ew, both varying between -1 and 1) and one variable for the absolute185

magnitude of the wind vector (wind_speed). Finally, time of the year was represented by time_ws (winter–summer variability)

and time_sa (spring–autumn variability). These were also formed cyclically to avoid a large difference between the value of the

last day of the year and the first of the next year, which occurs when using linear time and can disrupt the ML models. In our

naming convention for all four cyclic features, the positive direction is referenced first (i.e., wind_ns = 1 means northerly wind).

All in all, these changes resulted in 100 input variables to be considered for the ML models (see Table S1). These variables190

were chosen for their potential relevance for aerosol formation, transport or removal, or because they represent properties of

the particle size distribution in the climate model.

The three years of data were split into three subsets used for training, validation, and testing of the ML models. Because

of missing data, not all subsets could cover a full year (See Fig. 2). The last year of data (2018) was reserved for testing to

prioritize the completeness of the test results, while the rest of the data were split equally between training and validation.195

The difference in the number of samples between the subsets therefore depended on the measurement site. As atmospheric

phenomena often show strong seasonality, it was deemed beneficial to have data from throughout the year in all subsets, even

if increasing the size of the training subsets could also have been useful.

As most of the ML methods used in this study benefit from feature normalization, the input data were normalized to zero

mean and one standard deviation, computed from the training set. For all parts of the ML procedure that utilize randomness,200

the random number generator was initialized with an arbitrary seed number (1024858913).

4.3 Feature selection

Reducing the number of input variables by removing redundant or less impactful ones can improve the performance of ML

models, as well as mitigate unnecessary computational costs. Simpler models are also easier to interpret. Therefore, a feature

selection scheme was applied before feeding the simulation data into the ML models. A typical way to drop redundant variables205

is to see if some of the inputs correlate strongly, and only retain non-correlating ones (up to some threshold value). Dependence

between each feature and the target variable, on the other hand, can be an indicator of the feature’s relevance.

In this study, these ideas were combined to take both redundancy and relevance into account. First, a threshold for redundancy

(hereafter red_thresh) was selected based on the methods described in Section 4.5.1. For each feature, the number of times the

correlation of the feature with some other feature was larger than red_thresh was counted, and the feature with the largest count210

was dropped. This was repeated until no pair of features exceeded the threshold. In case the count was equal for two features,

the one with the larger sum of correlations was dropped. After this, another threshold was set for relevance (later rel_thresh),

and each feature whose correlation with the target fell below this threshold was also dropped. Both relevance and redundancy

were measured by Spearman’s correlation coefficient to account for nonlinear dependencies. The two threshold values were

optimized along the model-specific hyperparameters for each ML method and dataset to ensure optimal choice of features.215
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4.4 Machine learning methods

In this study, the downscaling task is performed using six different statistical methods. Unless mentioned otherwise, all methods

were implemented by the Python package scikit-learn version 1.1.1 (Pedregosa et al., 2011). The implementations feature a

varying number of hyperparameters, some of which were optimized (listed in Tables S2–S8), while others were either left to

their default values or given some other constant value. If some non-default constant value was used, it is mentioned in this220

section. For more detailed information on the effects of the hyperparameters, readers are referred to the documentation of the

methods.

Random Forest (RF) and XGBoost (further abbreviated XGB in figures) are based on different approaches to an ensemble of

decision trees. RF takes advantage of randomness to reduce the dependence between individual trees in the ensemble, thereby

reducing the ensemble’s total variance (Breiman, 2001; Hastie et al., 2009). XGBoost, belonging to the class of gradient225

boosting methods, generally builds smaller trees with less initial variance and aims to reduce the total bias of the ensemble by

sequentially adding trees that correct the errors made by the preceding trees (Friedman, 2001). Unlike the other five methods,

XGBoost was implemented by the standalone XGBoost library version 2.0.3 for Python (Chen and Guestrin, 2016). The

RandomForestRegressor function from scikit-learn was used for RF.

Neural networks (NN), in their most basic form, are made of layers of interconnected nodes that each produce a linear230

combination of the incoming signals, which is then transformed by a non-linear activation function (Alpaydin, 2014). The first

layer is composed of the inputs, while the last layer produces the output(s). The layers between them are referred to as hidden

layers. Such simple feedforward NNs are also known as multilayer perceptrons (MLP). The scikit-learn function MLPRegres-

sor was used as our NN, and two different versions were trained separately: one with one hidden layer (NN1), and another with

two hidden layers (NN2). These model architectures were also considered distinct from the point of view of our comparison,235

increasing the number of methods in the results section from six to seven. Before optimization, two hyperparameters were

given constant values based on preliminary tests: batch size was set to 32 and solver to "Adam".

Instead of fitting a complex non-linear function to the training data, the Support Vector Machine (SVM) transforms the data

into a higher dimension, where it then fits a linear model to it (Cortes and Vapnik, 1995). In practice, this computationally

demanding coordinate transformation can be replaced by a kernel operation by choosing suitable basis functions (Alpaydin,240

2014). Additionally, if a data point’s distance to the fitted hyperplane were smaller than a specified amount, the point would be

ignored by the fit. This way, the model’s tolerance to minor errors can be controlled (Alpaydin, 2014). A function called SVR

from scikit-learn was used to implement the SVM model. Before optimization, the upper limit for solver iterations (max_iter)

was set to 10000, as some unsuitable hyperparameter combinations could cause the iteration to become stuck. Concurrently,

the SVM’s cache size hyperparameter was increased from the default 200 MB to 1000 MB to avoid issues with insufficient245

memory.

Gaussian Processes (GP) take a Bayesian approach to ML by conditioning a prior distribution, again represented by a kernel

function, on the training data. The mean of the resulting posterior process can then be used as a prediction (Rasmussen and

Williams, 2005). GaussianProcessRegressor from scikit-learn was used for this study. Most of its hyperparameters were set
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before the optimization, leaving alpha as the only optimizable parameter. The number of restarts was set to nine (meaning ten250

runs in total), and normalize_y was set to True, as recommended for zero-mean, unit-variance priors in the documentation.

Additionally, copy_X_train was set to False, as the training inputs are not changed during the optimization and thus do not

need to be saved. An RBF (Radial Basis Function) kernel with length scale bounds (1e-10, 1e2) was selected as the covariance

function of the GP. The length scale of the kernel is optimized internally by GaussianProcessRegressor, and not as part of the

hyperparameter optimization procedure.255

The sixth method in the comparison was the Generalized Linear Model (GLM). It generalizes, and improves upon, linear

regression by allowing a non-Gaussian error distribution, and enabling a nonlinear relationship between the inputs and the target

through a so-called link function (McCullagh and Nelder, 1989). Nevertheless, GLM does not utilize interactions between

inputs unless they are explicitly defined, making it considerably simpler compared to the other methods. Because of its relative

simplicity, GLM is not always considered a pure ML method. In scikit-learn, GLM is implemented by the TweedieRegressor260

function.

4.5 Hyperparameter optimization

4.5.1 Optimization methods

Finding the hyperparameter values that result in a model configuration with the highest predictive performance can be seen

as an optimization problem, where the objective function to be optimized takes the hyperparameters as inputs and produces265

as output some measure of the goodness-of-fit of the corresponding ML model. Each evaluation of the objective therefore

involves training a ML model and testing it against observations, which can make a brute force search through hyperparameter

combinations extremely slow. To minimize the number of evaluations, the Bayesian optimization (BO) approach aims to

approximate the expensive-to-evaluate objective through a surrogate function, such as a Gaussian Process (Brochu et al.,

2010). The surrogate function is updated every time a new point is evaluated, and can be used to strategically select the next270

point either in a region of uncertainty (favoring exploration) or closer to previously found extrema (favoring exploitation). An

acquisition function determines which points should be evaluated, and can often be tuned to balance the trade-off between

exploration and exploitation.

In this study, a BO algorithm from the Python package bayesian-optimization version 1.4.3 was used to search for optimal

values of the hyperparameters and feature selection thresholds (Nogueira, 2014–). This implementation uses a GP as the275

surrogate function. The default kernel for the GP is the Matérn kernel, which has a parameter ν controlling the smoothness

of the sampled functions. Another tunable parameter of the optimizer is the noise level α of the GP itself. For the acquisition

function, the package’s default option is the Upper Confidence Bound (UCB) function

UCB(x) = µ(x) +κσ(x) (1)
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where κ controls how much weight should be given to the posterior’s standard deviation σ(·) relative to its mean µ(·). That280

is, a higher κ favors exploration, focusing the search on regions of higher uncertainty. We have generally used the default

settings for both the acquisition function and the GP, apart from some customization that is described next.

Many of the hyperparameters in ML models are either integer-valued (e.g. number of estimators in an ensemble) or cat-

egorical (e.g. choice of activation function in NNs), while the GP of the BO algorithm utilized in this study only supports

optimization of hyperparameters with continuous values. A common solution to this is to take the point suggested by the ac-285

quisition function, and either round the hyperparameters to the closest integer or one-hot-encode the categorical ones before

evaluating the objective, depending on which one is needed. As demonstrated by Garrido-Merchán and Hernández-Lobato

(2020), this approach causes the GP to ignore that an interval around an integer becomes known when one point is evaluated

in the interval, as all values in that interval are rounded to the same integer value. This can lead to unnecessary evaluations

and thus slow down the iteration. In the worst case, the algorithm can even become stuck on one point. Therefore, the authors290

propose that the transformation (i.e., rounding and encoding) of the hyperparameters should be done inside the kernel function,

so that the acquisition function gains accurate information about the posterior when evaluating a new point. We have applied

this approach to the default Matérn kernel, keeping it otherwise unchanged.

As the range of the hyperparameters can be wide and the general location of the optimum can be uncertain, it can be useful to

optimize some hyperparameters logarithmically. This is not supported by the BO package by default, but it is easy to implement295

by transforming, at the beginning of the objective function, the hyperparameter x in question to 10x, effectively optimizing the

value of the exponent. This transformation was applied to many hyperparameters in almost all ML models, and is also indicated

differently in Tables S2–S8.

In addition to BO, the optimization of the hyperparameters was also done using a randomized search (RS), which would

be expected to perform worse, as long as the BO iteration proceeds properly. As there are multiple parameters to tune for the300

optimizer itself that can significantly affect its performance (Snoek et al., 2012), a suboptimal selection could potentially make

the BO method inferior to a purely random procedure. In our application, where a large number of models are optimized, it

would be highly impractical to inspect every model individually to make sure the BO iteration has succeeded, especially with

the limited options for visualization available. Visualizing aspects of the optimization process can make it easier to verify that

the parameter space has been thoroughly explored and that fitting the GP has been successful. Due to these limitations, both305

BO and RS were used.

4.5.2 Optimization procedure

The selected optimization method, either BO or RS, was executed for 300 iterations. In the case of BO, the first 30 points were

also sampled randomly to have sufficient data for the acquisition function to operate on. Another case, called "pure BO" in the

results section, was run without sampling these initial points. As for the parameters of the optimizer itself, the ν of the Matérn310

kernel was set to 1.5 (making the samples from the GP once differentiable), while the α of the GP was set to 1e-2 when the

model had categorical hyperparameters, and left to the default 1e-6 otherwise. Three options (1, 2.5 and 10) were tried for the

κ parameter of the acquisition function to account for different needs for exploration and exploitation.
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In addition to these five cases (RS, pure BO, and BO with three different values of κ), two more cases were formed by not

optimizing the feature selection (FS) parameters as part of either RS or BO (with κ = 2.5). Hence, all 100 input variables were315

included in the models. These two cases are called "RS & no FS" and "No FS", respectively. It should be noted that without

feature selection, the only hyperparameter of the GP model is α, and therefore it would not make much sense to use BO to

optimize it, as it is also based on fitting a GP. In this case, RS was used instead, meaning that "RS & no FS" and "No FS" refer

to the same procedure when GP is concerned.

4.6 Evaluation of model performance320

To represent the results of the model evaluation, we have used five metrics, each with a slightly different purpose. In addition to

the commonly used mean absolute error (MAE), root mean squared error (RMSE) and Spearman’s rank correlation coefficient

(r), two more metrics were used:

ρ2(y, ŷ) = 1−
∑n

i=1(yi− ŷi)2∑n
i=1(yi− ȳ)2

(2)

sMAE(y, ŷ) =
MAE

ȳ
=

n−1
∑n

i=1 |yi− ŷi|
ȳ

. (3)325

These are, respectively, the coefficient of determination (ρ2, often denoted by R2) and scaled MAE (sMAE), as presented

by Mikkonen et al. (2020). In the equations, y stands for the vector of observations and ŷ for the predictions, and the bar

above signifies mean over the vector’s elements. We have chosen not to use the common R2 notation for the coefficient of

determination to emphasize its differing behavior between linear and non-linear models. In unconstrained linear models, R2

is equivalent to the square of the correlation coefficient, ensuring it is always positive. However, for other types of models330

that can deviate substantially from the mean of the observations, the coefficient of determination can take on negative values,

as shown in the equation above. Regardless of the model type, its maximum value remains one, achieved when predictions

perfectly match observations. Along with serving as a comparative metric, ρ2 was also used to evaluate the goodness-of-fit of

the models during optimization. That is, model architectures maximizing ρ2 were selected.

Like ρ2, RMSE penalizes larger deviations relatively more compared to smaller ones. RMSE, however, might be easier to335

interpret, as it has the units of the variable being considered - in this case, 1/cm3. MAE similarly has units of 1/cm3, but is

less sensitive to outliers. To make it easier to compare the performance of models across datasets with different scales, such as

the modes of the size distribution, we have scaled MAE by the mean of the observations and included the resulting sMAE as

a performance metric. In the case of a long-term time series of PNC, the mean is always strictly positive, so the problems of

dividing by zero or changing the sign are avoided.340

In addition to analyzing the predictive performance of the final models, a game theoretical method known as SHAP (SHapley

Additive exPlanations) was applied to study which input variables are used by the models, and how they generally affect the

predictions. Details on the theoretical basis of the method can be found in Lundberg and Lee (2017) and Molnar (2022).

SHAP is used as an efficient way to compute Shapley values, which give an indication of the magnitude and sign of each
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variable’s effect on the prediction (Shapley, 1953). The Shapley values of each prediction (in this case, each day) can be345

analyzed individually to study particularly interesting data points, or aggregated to see what kind of effects the variables have

on average. For an individual prediction, a positive (negative) Shapley value of a feature implies that the feature’s current value

has led the model to predict an increase (decrease) in the target variable, relative to the average prediction. In this study, the

aggregated values were considered using so-called beeswarm plots that additionally show the individual instances to give a

better idea of the distribution of the feature effects. In a beeswarm plot, if the Shapley values generally become larger (smaller)350

as the feature value is increased, it would indicate a positive (negative) dependence between the feature and the target. The

Python package shap version 0.40.0 was used to implement the method (Lundberg and Lee, 2017). To compute the Shapley

values, the explainer function using the permutation algorithm was applied to the test set.

5 Results and discussion

5.1 Downscaling performance355

Figure 3 shows the PNC results of the most successful downscaling methods for each of the eight datasets. In all cases, a clear

improvement is observed compared to the original modes simulated by ECHAM-HAMMOZ, both visually and based on the

five metrics shown in the figures. XGBoost achieved the highest ρ2 for all modes from Melpitz and the Aitken mode from

Helsinki. Gaussian process regression resulted in the best model for Leipzig’s Aitken mode and Helsinki’s nucleation mode,

support vector machine for Helsinki’s accumulation mode, and the generalized linear model for Leipzig’s accumulation mode.360

Generally, the downscaling of the accumulation mode was most successful, whereas the nucleation mode seems to have been

more difficult to downscale, resulting in relatively low ρ2s in both Helsinki and Melpitz. All three downscaled accumulation

modes have higher ρ2s, correlations, and sMAEs than any of the other datasets, even though many peaks and troughs are still

estimated incorrectly. The downscaling model trained on the accumulation mode of Melpitz performs best out of the three,

producing a ρ2 of 0.56 and sMAE of 0.24.365

The original ECHAM-simulated nucleation modes differ significantly from the measured ones, likely contributing to the

relatively poor performance of the downscaling models for that mode. In Melpitz, the ρ2 of the original is lowest among all

modes (-14.53), and the sMAE is highest (3.36). The strongly negative ρ2 indicates that the large-scale approximation of the

size distribution in ECHAM is a poor representation of the nucleation mode at this site. In wintertime, the simulation repre-

sents the measurements reasonably well, but a strong overestimation is apparent from spring to autumn. Similarly in Helsinki,370

the correlation between the simulated and measured nucleation modes is almost nonexistent (0.03) before downscaling. The

simulation is unable to predict the high peaks in number concentration during spring and early summer, but instead predicts

peaks for autumn, when the measured concentrations are relatively low. By downscaling, these differences can be greatly re-

duced: sMAE drops from 1.01 to 0.56 in Helsinki and from 3.36 to 0.74 in Melpitz, and the previously negligible correlation

in Helsinki increases to 0.38. Thus, even though the performance metrics of the downscaled nucleation mode are worse even375

when compared to the non-downscaled ECHAM-simulation of the accumulation mode in Melpitz, the improvements are sig-

nificant considering the starting point. Additionally, it should be noted that arithmetic means instead of medians were used in
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Figure 3. Daily average particle number concentrations per mode in 2018, for all three sites. Measurements are shown in blue, ECHAM-

HAMMOZ outputs in green, and the results of downscaling by the best model for each dataset in orange. Goodness-of-fit metrics are reported

in the top left corners of each figure, first for the downscaling and then, in parentheses, for ECHAM-HAMMOZ.

the daily averaging to preserve the highly variable nature of the data. Using medians would smooth the time series, which,

while possibly improving downscaling results, would also depict the nucleation mode less realistically.

A strong variability can be seen in both the simulated and measured Aitken modes at the German sites (Melpitz and Leipzig),380

although the peaks and troughs match poorly. In winter, the simulated concentrations decrease more than they should. The

downscaling methods are generally able to bring the concentrations to a more realistic level, but they fail to capture the true

variability in the data. Compared to the modes simulated by ECHAM-HAMMOZ, the downscaled concentrations no longer

fluctuate as rapidly, but instead seem to more carefully follow an average level between the peaks and troughs of the measured

time series. This can be acceptable when the main focus of a study is on long-term averages, and not on e.g. maximum385
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daily exposures. Regardless, an improvement compared to the original is seen in all reported metrics. For the Aitken mode

from Helsinki, the original simulated concentration is mostly too low, and has a less drastic summertime variability compared

to the German sites. The downscaling by XGBoost fixes the underestimation and brings the variability closer to that of the

measurements. Based on the metrics, the results are quite similar to the other Aitken mode datasets. The increase in the

correlation coefficient from 0.12 to 0.53 is largest out of all datasets, and the improvements in sMAE and ρ2 are also among390

the largest.

To summarize, downscaling was generally more effective for larger particle sizes than for smaller ones, and for the rural

Melpitz site compared to the urban sites. The eight datasets were further examined through statistical tests comparing the means

of the training, validation and testing subsets of the measured PNC. These tests found significant differences between the years

for most modes and sites, amounting to five out of eight cases in total. If the subsets differ substantially, ML models may395

struggle to generalize from one dataset to another. To potentially reduce the variation between subsets, the temporal dimension

of the data could be expanded beyond three years, thereby enlarging each subset. Training the models with more than one year

of data, in particular, could enhance generalization performance. Therefore, we recommend collecting more data for future

studies, if possible.

5.2 Comparison of ML models400

In Figure 4, a comparison of all seven downscaling methods across the eight datasets can be seen. The performance of the

methods varied depending on the dataset: all methods were among the best in at least one of the datasets, but most of them also

failed in some cases, yielding ρ2s close to, or even less than, zero. Only RF and GP showcased stable performance, as they

never resulted in a ρ2 less than 0.1, and were never among the worst performing methods. On average, XGBoost had the highest

ρ2 (0.263), followed by SVM (0.250). XGBoost was also the best method for four out of the eight datasets. It only failed in the405

nucleation dataset of Helsinki, where it had a lower ρ2 than any other model. However, this dataset turned out to be difficult for

all methods, as none of them were able to reach a ρ2 above 0.15. Generally, the differences between methods were smaller than

the differences between datasets, and in many cases, multiple methods were nearly equal in performance. Only some datasets

had one method that clearly outperformed the others; this was XGBoost in the nucleation and accumulation datasets of Melpitz

and in the Aitken dataset of Helsinki, and GLM in the accumulation dataset of Leipzig. Additionally, XGBoost and SVM were410

the two best methods for all modes from Melpitz, indicating some commonality between these datasets.

Overall, other ML methods have a slight advantage over GLM, as its average ρ2 is the lowest across datasets (0.176). There

is, however, strong variance in its performance, as it is among the best methods in both Leipzig’s accumulation dataset and

Helsinki’s nucleation dataset, but among the worst in the six remaining datasets. In three of the six datasets, it is strictly

the weakest, and in the other three, only two methods (NN2 and SVM) perform slightly worse. Particularly, the previously415

mentioned RF and GP were never outperformed by GLM, except in Leipzig’s accumulation dataset. Moreover, GLM results

in negative ρ2 (-0.126) in the Aitken dataset of Helsinki, a drastic difference to all other methods.

For RF and the two neural networks, a mean ρ2 from 50 different initializations is shown in both the table and the graph in

Fig. 4. The magnitude of the 2σ confidence intervals, given in parentheses, indicates that randomness had a relatively minor
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Figure 4. Test set performances (ρ2) of the optimized models for all eight datasets. For the methods that are affected by randomness, the

2σ confidence intervals computed from 50 different initializations are also shown in the table. The background colors in the table represent

the optimization method used. The methods and the abbreviations are explained in Sections 4.5.1 and 4.5.2. In the cases where multiple

optimization methods produced the exact same result, the background is left blank. These cases were Helsinki Ait (Pure BO, κ = 1, and

κ = 2.5) and Helsinki Acc (κ = 1,κ = 2.5,κ = 10, and RS). The downscaling method(s) that achieved the highest ρ2 for a given dataset are

shown in bold (differences of less than 0.025 are disregarded).

effect on the performance of these models, except for those models that performed poorly to begin with. It is also interesting to420

compare the two variations of the neural network. In all datasets from Helsinki, adding another layer to the neural network was

beneficial. The simpler one-layer network yielded better results in all other datasets. This could be linked to a higher complexity

in modeling the particle number size distribution in Helsinki compared to the other sites. This complexity may also be reflected

in the qualities of the optimized models: the three best models developed for Helsinki’s modes utilize all 100 features, while at

least some amount of feature selection was beneficial for all of the other datasets’ best models (see Tables S2–S8). Conversely,425

the accumulation mode of Leipzig seems to have been a less complex target for downscaling, as the optimal number of features

for it was lower than for other datasets, both when considering the best method (GLM, 19 features) and the average of all

methods (28 features). In this case, interactions between features were not needed either, as GLM does not utilize those, unlike

the other methods. It is of course possible that having access to more training data or an even wider range of input variables
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would reveal some interactions that were not found by our current procedure. In that sense, the simplicity of the best model430

might only indicate that something, like outliers in the training data, confused the more complex methods while not affecting

the linear model to the same extent.

5.3 Notes on optimization

In the table of Figure 4, the method of hyperparameter optimization that resulted in the best model is represented by the color

of the cell’s background. It can be seen that for most models, the BO methods were superior to RS. However, it is surprising435

that in some cases randomized search (RS) led to higher ρ2. The number of iterations for both approaches was the same, and

BO searches the parameter space more methodically, so it should have been able to find a better combination of hyperparameter

values. In these situations, it is possible that the hyperparameters don’t have a clear optimum, and therefore a reasonably good

combination can be found randomly. Then, RS could work slightly better than BO purely by chance. Another possibility is that

the few alternatives which were tried for the parameters of the optimizer itself (e.g. kappa, alpha, and nu) were suboptimal for440

that specific model and dataset. Selecting the parameters correctly can be challenging when the number of different models

and datasets is large, and when the options for visualization are limited, such as in high-dimensional spaces. Finally, it is

possible that the optimization algorithm itself didn’t fully work as intended in these cases, or even got stuck without actually

converging on a solution, possibly due to the additional complexity in the acquisition function caused by the treatment of

discrete-valued and categorical hyperparameters, as mentioned in Nguyen et al. (2020). This problem could be difficult to445

diagnose in a comprehensive model comparison study, when every result cannot feasibly be individually inspected.

For the GP models trained on the datasets of Helsinki, both "No FS" and "RS & no FS" involved using RS and were thus

identical, for reasons discussed in Section 4.5.2. In the cases where the background of the table is white, multiple optimization

methods yielded the exact same hyperparameter values and hence also ρ2. This means that the hyperparameters resulting in

the highest ρ2 were discovered either during the initial random steps of the iterations (which were now deterministic due to450

the fixed seed number), or by the convergence of the BO algorithm to the same hyperparameter values during the non-random

steps. The latter was the case for the RF model trained on the Aitken data from Helsinki. This makes sense given that one of the

equally performing optimization methods was "Pure BO", which didn’t utilize random iterations. For the NN2 model trained

on Helsinki’s accumulation mode, on the other hand, the optimum was found from among the initially sampled points in all

four identically performing cases. It is also interesting to note that if optimized correctly, our feature selection method could455

have resulted in practically no selection (i.e., full set of features) by setting the thresholds for redundancy and relevance to 0.99

and 0, respectively. Therefore, it should theoretically always be equal or superior to the "No FS" cases where all 100 features

were used without any selection procedure. However, this might be further complicated by the effect of an increased number

of hyperparameters on the capability of the optimization algorithm to find the optimum.

In conclusion, BO can improve the results of hyperparameter tuning relative to a randomized search, but can be significantly460

affected by the selection of the BO parameters and therefore requires careful analysis of the optimization process. Due to this

tradeoff between the simplicity of RS and the (generally) improved optimization performance of BO, BO may be preferable

when developing one computationally expensive ML model. However, when the number of models under optimization is
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Figure 5. Most important input variables across all eight datasets, measured by mean absolute SHAP values. All seven ML models were

analyzed for each dataset. Hence, the upper limit for the height of the bars is 56. Bars with height less than ten are not shown.

large, the interpretability and ease of implementation of RS can make it a more practical choice. Other Python packages

that implement similar optimization methods, though not only Bayesian, also exist and could alternatively be utilized. Some465

examples are Hyperopt (Bergstra et al., 2013), Optuna (Akiba et al., 2019), and SMAC3 (Lindauer et al., 2022).

5.4 Interpreting the models

The SHAP method, described in Section 4.6, was used to analyze the features in the ML models. Figure 5 shows a summary

of the most important features across all models. The height of the bars relates to how many models were strongly influenced

by the corresponding feature, defined by the feature being among the ten highest when ranked by mean absolute SHAP value.470

For example, the north-south directional component of wind was among the ten most important in 46 models out of the total

56. In general, the wind-related features are seen to be important for the prediction of all modes of the size distribution, though

less so for the nucleation mode. Solar radiation is also one of the most important variables. ML models for the smallest two

size modes seem to utilize emissions of organic carbon, whereas accumulation mode is connected to sulfur dioxide (SO2) and

sulfate (SO4), according to the SHAP values. Interestingly, the feature for geopotential height is mainly used by the Helsinki475

models.

The modewise summaries of the SHAP explanations (given in Figures S1–S3) can be examined for additional insights.

Figure S1 shows that also variables related to dust and black carbon, which are not present in the summary figure (Fig. 5), are

contributing to many of the ML models for accumulation mode. Variables used for downscaling Aitken mode (Fig. S2) do not

substantially differ from the ones shown in the summary of Fig. 5. In general, we recommend refraining from using SHAP480
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to interpret weakly performing models, such as most of the ones for nucleation mode (Fig. S3), as any conclusions made are

likely to be misleading.

The best-performing ML models were studied in detail using SHAP (Figures S4–S15). These model explanations can be

compared to experimental studies from the sites to see how well the statistical relationships found by the models correspond

to the physical characteristics of the locations. The Helsinki station can be taken as an example. In previous research (Järvi485

et al., 2009), the surrounding area has been subdivided into three distinct land use sectors, of which the road sector to the

southeast has been found to be the largest contributor to the accumulation mode (100–1000 nm), especially during springtime.

In addition to the road itself, long-range transport from the east is hypothesized to contribute to this sector’s accumulation

mode. On the other hand, an increased concentration of ultrafine particles (3–100 nm) has been associated roughly equally

with the road sector and the urban sector to the north. The vegetation sector to the west remains a direction of slightly less490

polluted air throughout the year. These findings are in line with the effects of wind direction in our models: Figures S4–S8 for

Helsinki show that the east-west wind component is important in all models, and that its effect is positive (i.e., easterly wind

is connected to increased pollutant concentrations). The two best models for Helsinki’s accumulation mode (Figures S4–S5)

both also include the north-south component, which has a negative effect on PNC. This means that the models predict higher

concentrations when wind is blowing from the south. Järvi et al. (2009) point out that ship emissions from the harbor, located495

approximately in this direction, can affect accumulation mode PNC. Moreover, the springtime increase is also captured by

these two models. It is interesting to note that NN2 has almost the same ρ2 as SVM, despite using far fewer features (18 and

100, respectively).

As the models for Helsinki’s nucleation mode (Figures S7–S8) are quite weak, and therefore unlikely to capture the relevant

effects, we compare the UFP of Järvi et al. (2009) only to our Aitken mode downscaling model (Fig. S6). The positive effect500

of northerly wind and the negative effect of temperature on the Aitken mode PNC seem realistic, as wood combustion in the

urban sector is a significant source of pollutants in the area. Importance of the variables boundary layer height and atmospheric

pressure might also be related to the same phenomenon.

Likely, some (or even most) of the features shown in the SHAP plots are only deemed important because they correlate with

some physically relevant quantity, and not because they themselves cause changes in PNC. For example, this is probably the505

case with the sea salt variable in Figures S13 and S15, as Melpitz is located nowhere near marine environments. In the ECHAM-

HAMMOZ data, PM25_SS is highly correlated with certain variables (num_2a6, num_2a7, WAT_2a6, and WAT_2a7) that

might more realistically be connected to PNC in Melpitz, however.

In this analysis, it should naturally be recognized that all features originate from a simulation of large-scale climate, and

therefore do not necessarily represent the immediate surroundings of the measurement sites. Additionally, SHAP is known510

to be sensitive to correlated features (Aas et al., 2021), which most of our models include; if accurate explanations of the

models are crucial, care should be taken to remove all (even somewhat) correlating features before training or use more robust

explanation methods.
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5.5 Performance considerations

Although our results indicate that some of the ML methods may on average result in higher goodness-of-fit metrics, there515

are other aspects that might affect the choice of downscaling method. For example, the training and inference durations for

different ML methods can vary differently as a function of the dimensionality of input data. In our study, the computational

performance of the methods was not considered important, as the downscaling was done as a post-processing step. However,

if the downscaling was included as an online correction in the climate model itself, speed of the method would be critical. We

have compared the computational performance of the seven model architectures separately for the training, optimization, and520

inference steps (Fig. S16). There is significant variation in performance: in terms of training, GLM and SVM are by far the

fastest, while the NN architectures take longest to train on average. When applying the models for inference, however, NNs

are among the fastest, along with GLM. This might make them preferable in applications where computing time is costly. In

the optimization phase, the BO algorithm itself takes relatively long to iterate through, reducing the difference in total duration

between most methods; still, NNs are the slowest, though there was large variation depending on the number of NN nodes.525

Adding a layer to the NNs slowed their training substantially. These findings are naturally only indicative of how the methods

perform computationally, and may not apply to datasets of different size. Moreover, parallel computation of the training or

inference algorithms can yield additional speedups, which could be another advantage of the methods capable of being paral-

lelized. Of our six methods, RF and NN training can be run in parallel, as the trees in RF can be trained independently, and the

NN training can be split into independent batches. Parts of the XGBoost algorithm can also be parallelized, though the trees530

of the ensemble must still be trained successively (Chen and Guestrin, 2016). Another advantage of NNs is that their structure

is ideal for multi-target regression, i.e., the number of target variables can be freely chosen. This way, all three modes of the

size distribution could be downscaled with a single NN. Using the other ML methods, a separate model needs to be trained for

each individual output variable.

6 Conclusions535

This study provides a proof of concept for using ML methods to improve the spatial accuracy of aerosol particle number size

distributions derived from global-scale climate models. By employing six ML methods, optimized through feature selection

and hyperparameter tuning, significant improvements were observed in the simulated particle concentrations, especially for ac-

cumulation and Aitken modes. Among the methods, XGBoost demonstrated, on average, superior performance across various

datasets. Despite these advances, the nucleation mode proved more challenging to downscale due to high spatial variability and540

limitations in the underlying large-scale climate model outputs.

The findings underscore the potential of ML-enhanced downscaling as a computationally efficient alternative to traditional

methods, offering robust applications in air quality and epidemiological studies. It was observed that downscaling methods

can significantly enhance model accuracy at individual measurement sites. However, the selection of a suitable downscaling

method requires precision and depends on the target variable’s characteristics, as well as spatial and, assumably, temporal545

dimensions. For example, while particle size modes were the focus here, the same methods could be applied to other variables
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as well. Future research should focus on expanding the geographical scope of measurement data, integrating additional features

to capture local-scale variations, and exploring dynamic downscaling during climate simulations. These advancements could

enhance the predictive accuracy of particle size distributions in coarse-scale climate models, contributing to better assessments

of climate change impacts and health outcomes.550
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